Data Organizational w
Methods

115

Storage Networks: The Complete Reference

the most sophisticated storage infrastructure is meaningless. Our last storage

fundamental covers the methods and types of organizational models used to
facilitate the productive use of stored data. Data organizational models and methods
are part of the entire storage infrastructure. Their proximity to other elements within the
infrastructure indicates that structures, such as file systems and databases, are the
critical connectivity between application and end user. Data is stored for many
different reasons and accessed in as many ways to support a rapidly changing business
environment. The knowledge, awareness, and insight to the diversity of data
organizational models is as important and critical as that of storage systems and
connectivity options.

Without the ability to view, manipulate, and update data stored on the computer,

O R R PR L e S S S e N S S 8 S S S Rt

| Org"anizingwDafﬁa‘m

Data in computer systems is organized by creating databases. Databases are defined as
a collection of interrelated material stored in an environment that is both convenient
and efficient to use in retrieving information. This is done through a combination of file
systems, database management systems (DBMS), and applications. Combined with an
effective storage system, the database can offer an environment where data can not
only be stored and updated on a reliable basis but also be accessed in multiple ways.

Underlying the DBMS is the file system that works as a component of the operating
system. The file system functions as the operating system'’s ability to organize and
retrieve the physical data that exists on attached storage media and within memory
devices. File systems deal with the physical aspects of storage media, the data
locations, as they are stored within the media segments, and the status of the data within.
The v also provide the first level of transparency to the user or owner of the data.

Database management systems (DBMS) provide methods for defining the data,
enhanced access to data generally through some type of enhanced indexing system,
and functions for maintaining the data structures as well as the data itself. Defining
and accessing the data through a DBMS, users can additionally perform calculations
and logical functions on the stored data, and present the data in enhanced views
(usually tabular reports that include graphics and charts).

Business applications take advantage of the file system and DBMS functions
by using their transparent data retrieval and dealing directly with the data without
having to understand or know the underlying operations of the DBMS or a native file
system. As we indicated in Chapter 1, most application designers and programmers
can use these high-level functions without regard to the underlying hardware and
software infrastructure. Others can be locked into specific DBMSs and file systems
that have become standardized within their data centers.

Chapter 8: Data Organizational Methods

| Interrelationships of Performance
File systems, database systems, and storage systems are interrelated and dictate levels
of performance for the storage infrastructure. File systems, for their part, form the basis
for efficient and effective access to an application’s data. Problems occur, however,
when the file system is doing its job with unoptimized disks, insufficient disk space,
or bandwidth constraints in the bus. As application performance becomes problematic,
the file system attributes should be considered for better alignment with the available
storage infrastructure.

Many relational databases don’t use an operating system’s file system at all. Given
that's the case in many database instances, then what substitutes the functionality of
the file system within the database? Actually, many database systems interact closely
with installed storage systems through the use of their own file system and virtual
[/O manager.

Finally, many applications rely on the interaction of files that are networked. This
provides yet another dimension to the interrelationship of the tile system to storage
and the challenges to the integrity and reliability of the data stored within a network.

Virtualization Times Three

Data organizational methods begin the first slide into the confusion of virtualization.
This is because File Systems provide a layer of abstraction to the physical location

of data, the location of disks, and the storage media itself. Database systems further
abstract the physical data, physical location, and the actual data. Finally, the application
using both organizational methods will further hide (for example, virtualize) the
complexities of finding and managing the data. In many cases, we are left with the
question of where the actual data is.

The operating system component that encompasses the allocation of space, data
structures, and which keeps track of these organizational storage criteria is the File
System. File Systems operate within the I/O manager component of the OS. In most
operating systems, such as UNIX and Windows, the file system operates as a driver
or an additional service that will interact with the OS’s I/O management component.
This allows multiple file systems to simultaneously operate on a single server.

__-| Requirements for Enterprise-Class File Systems
Enterprise-class file systems need far more than convenience and efficiency to be
considered adequate support for enterprise OLTP, data warehouse, Internet, and
complex batch operations. The following are some of the global requirements that
should be addressed by any enterprise-class file system and the issues they raise:

B Security Limiting user access to files and exercising control over sensitive
physical resources—such as volumes and system files—continue to be the two

Storage Networks: The Complete Reference

major requirements for security within file systems. This has become cumbersome
as multiple and often duplicate security functions are offered by both file and
database systems. From the storage perspective, there exists a lack of effective
and integrated resource security and control functions that are available within
the storage infrastructure components.

Data Recovery Disasters, both large and small, are going to occur. The ability
to recover in a timely fashion has long been a requirement, as databases become
systems of record for both large and small enterprises. This, however, becomes
more sophisticated and complex as recovery functions for databases differ from
recovery functions for file systems which, in turn, differ from the recovery
system of an entire application.

Fault Resiliency/Tolerance This is the “timely” part of the recovery
requirement. Most notably, the requirement that says you have to be up for
24/7. Although a noble thought, the reality of keeping an enterprise system
available in this manner does not exist yet. Having said that, however, the
tunctionality to repair and recover from most hardware failures without
disrupting the application can be accomplished at various levels. The problem
continues to be that enterprise application systems are likened to living entities
that consume resources, and many of these are just temporary and need

to be refreshed from time to time. Secondly, the ability to design and place
card-holders (for lack of a better term) in the processing time frames has failed
to mature with the sophisticated hardware/recovery systems available today.

24/7 systems have existed for some time in mainframe configurations, with full
redundancy at various levels. However, as data centers migrate their operations
from the mainframe to open systems using commodity-based platforms, additional
levels of maturity must evolve before open system hardware and software provide
the same levels of desired fault tolerance.

B Support for Advanced Storage Systems and Application Requirements
Last, but certainly not least, is the support for future enhancements to disk
drives, disk formats, tape, and so on. There’s no question that this is an
important factor given that databases and file systems are closely tied to
their storage relatives and must keep up. The typical IT oversight in this
requirement concerns the effects that support of back level software (for
instance, file systems and databases) has on hardware manufacturers.
Although it looks altruistic on the outside, inefficiencies develop when this
continues for any length of time.

Chapter 8: Data Organizational Methods

From the most academic definition, the file system is a logical sequence of blocks on a
storage media. Files are a basic construct of the operating system. With the exception
of certain data (refer to relational databases further in this chapter), all data is kept in
some type of file format. As such, it requires a system to maintain and manage the
relationship with storage on behalf of the operating system. These file system functions
are shown in Figure 8-1 and can be categorized in the following manner: allocation,
management, and operations. These functions are described as follows:

M Allocation File systems provide the capability to organize I/O devices into
functioning units of storage.

B Management File systems provide the activities necessary to track, protect,
and manipulate data stored within the [/O devices.

B Operations File systems locate logical sequences of data (for instance, a file)
through various search methods depending on data recoverability and the
sophistication of the system.

Allocation

The file system allocates the two most important elements of the storage media, the
volume, which defines the physical device, and its related attributes. Secondly, the
files, which are collections of data, are accessible through some type of naming
convention to the operating system and, subsequently, the applications are stored
physically on the storage media. In today’s environments, multiple products can

Operating System l

v A 4
Volume o “File Access Volume/File
Allocation . File System .. Attribute Management
ile File
Allocation Modification
S R o
Device Drivers]

Storage Networks: The Complete Reference

make up these components. Accessible as add-ons to the basic components of the
operating system, these products support two distinct but interrelated functions: file
management and volume management. These products are available as recoverable,
journal, or high-performance file systems and as enhanced or extended volume managers.

Volume Definition

Allocation of space within storage, especially in disks, begins with the initialization
or formatting of the physical device itself. This is done by creating a volume that
corresponds to a logical partition of space on a disk. Given the esoteric nature

of volume initialization, volumes can be assigned to part of a disk or can span
physical disks.

The activity of formatting defines the smallest unit of addressable space within the
device and the creation of special files that will act as directories or catalogues for file
allocation and access. In Microsoft operating systems, these are referred to as clusters
and are mapped to the physical sectors of the physical disk. In UNIX, this is generally
defined, given there are multiple UNIX variants, as a super block. Consequently, there
exists a relationship between the file system allocation and the actual physical attributes
of the disk, such as capacity and density. Both file system units—clusters and blocks—
have an integral number of physical sectors. Therefore, large physical disks storing
small files can become very inefficient when the lowest unit of storage is a cluster that
utilizes multiple large sectors.

In addition, the overhead necessary to put the disk into activity (for instance, its
formatting) explains the difference between formatted capacities of a drive versus
unformatted capacity.

File Allocation

Once a volume is initialized, it is ready to store a file or logical sets of blocks. Files are
allocated according to the attributes set with volume formatting. Given that, a file is
allocated space through its smallest unit of measurement, which is the cluster or block.
Files are tracked through special files that have been created with volume allocation.
These master file tables (MFT), as they exist in Microsoft OSs (or inodes, as they're
referred to in UNIX systems), contain data about the volume, space attributes, and
files stored within the volume.

Access to files starts here with the master file table or inode. Within these special
files are indexing information, security access lists, file attribute lists, and any extended
attributes that the file may have. Once the file has been created, these attributes are
managed from these locations stored on the volume.

Management

The MFT, file allocation table, or super block-inode structures are increasingly being
referred to as metadata. Metadata simply means information about data. As we

Chapter 8: Data Organizational Methods

discussed previously, the operating system requires a function to store and access data.
One of these is the fundamental boot structure needed by the OS to initialize itself
during a power up or restart sequence. In addition to the metadata files allocation during
formatting, the process identifies and creates a boot file that becomes instrumental in
locating the special system information needed during the OS boot processes.

Another important allocation during this process is the creation of a log file, thereby
providing a recoverable file system, one that is required for enterprise-level operations.
A recoverable file system ensures volume consistency by using logging functions similar
to transaction processing models. If the system crashes, the file system restores the
volume by executing a recovery procedure that utilized activity information stored
within the log file.

In file systems, all data stored on a volume is contained in a file. This includes
the file allocation tables and volume table of contents structures used to located
and retrieve files, boot data, and the allocation state of the entire volume. Storing
everything in files allows the data to be easily located and maintained by the file
system, and a security attribute or descriptor can protect each separated file. If a
particular part of the physical disk becomes corrupt, the file system can relocate the
metadata files to prevent the disk from becoming inaccessible.

| There is an important exception to the preceding statement that “all data stored on

| a volume is contained in a file.” The exception is the allocation of disks using raw
partitions where an application will bypass the file system and manage the raw
storage segments. This is common for many relational database products.

Types of File Systems

Windows utilizes several types of file systems that support both client and server
operations. Most client OSs only need to support fundamental volume and file allocation
functions. This is handled through its ability to initialize and partition volumes with
formatting and file allocation through a simple file allocation table. However, within
server products, a more robust file system is required, as shown in Figure 8-2. Windows
server products provide a NT File System (NTES), which provides a robust file system
that supports enhanced volume and file allocation functions. These products include
volume fault resiliency features for partitioning volumes with redundancy features,
thus providing a subset of RAID features through software. Also supported is
recoverability through logging functions. Enhanced security attributes are provided
to support multiuser environments with levels of data protection for both user access
and file and volume protection.

UNIX has several variants; however, most offer a POSIX-compliant file system
that is a “bare-bones” component of the operating system. Enhanced and recoverable
file systems are available through third-party products. These add-ons provide both
enhanced performance and journaling. In UNIX, recoverable file systems are referred

Storage Networks: The Complete Reference

- Operating System [
Database N -

Management

Systems
) . .Y v R -
Volume/File File Access MFT Activity |
Allocation Security Access Lists Logging F
File S
Attribute tle System Fault Tolerance

Management Software RAID
Extensible Device Support

Lo

""" Storage Cache
Managers

p4 h 4
|
L
Device Drivers 7;) 1#

to as “journal” file systems, e.g., logging being synonymous with journaling. More
importantly, the UNIX markets have the availability and legacy of network file systems,
where files are shared across a network through a common file system and access
protocol.

The POSIX Standard, also known as the IEEE 1003.x POSIX standard, is the result
of working groups under the auspices of IEEE. It describes a set of standard operating
system interfaces.

Access to information via the Internet and through World Wide Web interfaces has
produced yet another variant of the file system, the Hyper Text Transport Protocol, or
HTTP. Although more of a common file access protocol, it does define a file structure
within the web-based environments depicted in Figure 8-3. Because it is supported
across both UNIX and Windows, it provides a common protocol for accessing files
through a network.

Another advancement in common file protocols is the Common Internet File
System (CIFS), as shown in Figure 8-4. Starting as a Microsoft initiative, it has now
become an open standard. Based on the need to provide file sharing among a diverse
set of operating system environments within a network setting, it is a model derivative
of NFS that allows Microsoft Operating Systems to access shared files on Microsoft
servers, UNIX servers, the Web, and most recently, Apple servers. CIFSs are based on

Chapter 8: Data Organizational Methods

NTFS or FAT32 NTFS or FAT32 UFS]
Windows PC Windows PC UNIX Workstation |
£ 13
CIF Protocol ICIF Protocol CIF Protocol
~_ |CIF Protocol ~__[CIE Protocol
Mac PC : UNIX Workstation
MacFS UFS
S _CIF Protocol |
Common Internet File System |
CIFs Windows Server
NTFS

SR e
Shared Storage
Access from Mac PC, Windows PC, and UNIX clients

|

 NTFS or FAT32 " NTFSorFAT32 | - UFS
Windows/OS Windows/OS UNIX Workstation
Internet Browser Internet Browser Internet Browser
HTTP Protocol HTTP Protocol HTTP Protocol
77777 HTTP Protocol o |HTTP Protocol
Internet Browser Internet Browser
Mac/0S UNIX/OS
MacFS UFS
.. ..__.|HITTP Protocol
HTTP: Web Server
Windows/OS or UNIX/0S
- T e ™ N
Shared Storage

Access from Mac PC, Windows PC, and UNIX Clients

s

Storage Networks: The Complete Reference

a Microsoft networking protocol of Server Message Block (SMB), and have both
advantages and limitations compared to NFS.

Other file systems are generally derivatives of UNIX variants and are used for
specialized applications, such as scientific and academic/research applications.
However, one alternative system (as shown in Figure 8-5) has produced a new type
of access, especially within networked environments. This is the Direct Access File
System, or DAFS. DAFS can be especially important given its use of Direct Memory
Access (DMA) functions for transferring data. Future DAFS products will have
extremely fast access times given their capability to transfer data between memory
locations.

The importance of file systems as they relate to storage systems and infrastructures
is straightforward and should not be overlooked. As you encounter more detailed
discussions in Parts IIl and IV regarding NAS and SAN, we will discover another
dimension to the importance of file systems and their capability to operate within
storage networked environments. As you may have already discovered, NFS, CIFs,
and HTTP all play a big role in these environments.

DMA
I I S Process ___ DMA
NTFS or FAT32 | NTES or FAT32 UFS Process
Windows PC- . i Windows PC UNIX kastatiEE"[
. - DMA
DAFS Protocol| Wf‘rocess { [DAFS Protocol DAFS Protocol
DAFS Protocol . DMA | DAFS Protocol
Windows PC Process UNIX Workstation |
NTFS or FAT32 | UFS pMma |
- T T Process |

MDirect e | DAFS Protocol

P emoF:\ - Direct Access File System
rocess [’)

(DMA) Server

(1

Enterprise Class File System
ST P
~ Shared Storage
Access to Files Performed from Server DMA and Client DMA

|
j

Chapter 8: Data Organizational Methods

__ | Databases
A database system is made up of individual software components that interact
with each other and with other system components, enabling applications access to
various abstractions of physical data. Some of the external components include the
functionality of file systems, storage cache, and resource manager functions. Other
database system components work as an interrelated system of functions to process
data requests on behalf of applications. The database’s sole purpose is to provide
consistent, efficient, and reliable data to end users.

[suppose it’s politically correct to substitute “information” for “data” here.
However, end users today manipulate more data than the average application
programmer did ten years ago. The point is, I don’t think end users are intimidated
any more regarding the handling, manipulation, and “programmed” access to
computer data. The sophistication of computer usage among “smart” users, the
available tools to extract, manipulate, and process data, have placed many users into
the category of “Super-User,” “Query Monster,” or “Departmental Programmer.”

The innovation and continued evolution of the database system has almost singularly
provided the impetus for these changes. Fueled by the standard query language, SQL,
and its derivatives, where programming has been taken to more accessible levels for
all computer users to understand and manipulate on their own, the world has seen an
explosion in database implementation, population, and usage.

Looking for Data

A major purpose of a database system is to provide many users with an abstract view
of the data. Depending on who you are, you need different levels of abstraction when
accessing existing data. IT professionals obviously require different types of access
than end users who assume enterprise OLTP and batch applications will provide them
with the right information (sorry, I mean data) at the right time. Underlying both IT
professional and end-user activities, designing applications, data models, and required
maintenance activities is a diversity of data access procedures. The various levels of
access and abstraction are described here:

M Physical Abstraction Used primarily by system database administrators
(DBAs) and system administrators (storage administrators are slowly coming
on board with these concepts), physical access is the lowest level of data
abstraction. This allows complex low-level data types and structures to be
described. It also provides a means to describe how the actual data is stored.

B Conceptual Abstraction Used by programmers, application designers, and
application DBAs, this is a level of abstraction up from the physical level that
describes what user data is actually stored in the database. This also describes
relationships that exist within and among the data elements. The conceptual

Storage Networks: The Complete Reference

level allows IT professionals to describe the entire database in terms of simple
structures or data models. The physical level uses data models, structures, and
descriptions to invoke complex physical structures to develop the database.

B View Abstraction Driven by those who derive value from its usage (usually
the end user), views are the primary level of abstraction for development of
graphical user interfaces (GUIs). End users are not concerned about the entire
set of information within the database, or the complexities of its internal
structures. As such, view levels become the highest level of abstraction of the
data and describe only one part of a database, simplifying the interaction of
end users with the database. Depending on the levels of abstraction required,
most users require multiple views of the data.

From a storage point of view, it is important to understand not only the physical
abstractions of the data, but also the database components that interact with native
operating system functions and storage drivers. This becomes increasingly important
as database systems push the limits of storage infrastructures unlike any other system
or application. However, it is also important to study the translations of abstractions to
understand storage-related problems as System and Application DBAs, Administrators,
and end users encounter them.

The following are the typical components of a database system:

M Database Manager Functions that provide the interface between the physical
data and the application programs, integrated application functions such as
search and mathematical algorithms, and physical access to the data.

B File Manager Functions that allocate space on storage systems and manage
the data structures used to represent the conceptual abstraction of data. This
component, in many cases, is integrated into the database manager, bypassing
the operating systems file system for these functions.

B Query Processor A component that translates statements from a query
language, such as standard SQL, into low-level instructions that the database
manager components will execute on behalf of the end-user query or
application program.

B Preprocessor Compiler A component that translates database language
queries, such as SQL that are embedded in application programs. The compiler
turns these into instructions for the query processor, which, in turn, processes it
and passes it on to the database manager.

B Data Language Compiler Functions that convert data language definitions
into data structures called metadata . The Metadata table entries are then stored
in a metadata database, sometimes called a data dictionary or repository.

Additional data structures are necessary as part of the physical implementation of the
database system. These are the data dictionary or data repositories, as we just discussed.

Chapter 8: Data Organizational Methods

Finally, index structures provide enhanced search access to data when searching for
particular values or data files.

Databases change as data is added and deleted. The collection of data in the database
at any given time is called an instance, while the overall design of a database is called
the database scheme or schema. The latter is expressed as a conceptual abstraction, and
is specified through a data definition language. The results of a data definition schema
are placed into a data dictionary or metadata table. A data manipulation language
is a set of procedures to access and manipulate the data such as the standard query
language or SQL.

Database Systems: Different Animals

There are only a few popular database models that have survived the mainframe-to-client/
server-to-Internet evolution. Interestingly, some of the older models continue to process
workloads today, albeit mostly on mainframe processing complexes. Databases can

be developed from a simple collection of sequential files, sometimes called flat files
because of their non-dimensional access restrictions, to the most complex mainframe
hierarchical databases. Regardless of implementation, major database management
systems have evolved from three conceptual models.

These are the networked databases based on a network data model. Characterized
by its capability to provide links within its fields of database records. The hierarchical
data model is used by many file systems in their functions to provide faster access to
directories and file indices. These are recognizable through their use of tree structures,
such as the B-Tree and B+Tree data structures. The third and most popular model is
the relational model, which forms the structure for all popular relational databases
systems, such as Oracle, Sybase, IBM’s DB2, Microsoft’s SQL/Server and others. The
database model that provides the most challenges, problems, and headaches to storage
infrastructures today is the same one that provides the most challenges, problems, and
headaches to storage networking infrastructures: the relational database.

Relational database systems consist of a collection of tables, each of which has a
unique name. Each field in the table is considered a distinct entity with attributes
and has relationships to other entities within its own table as well as to others in the
collection of tables that make up the database. User data is populated throughout
the tables by individual records. This forms the basis for the tremendous power of a
relational database, the ability to compare data elements to perform set mathematical
functions, or “What if” questions. From an overall systems perspective, this provides
two challenges:

M First is the compute-intensive nature of relational processing. Because relational
processing utilizes set mathematics to find the answer to a database query, the
data necessary to construct the sets and processing to compute the answer is
one of the most resource-intensive activities within data processing.

Storage Networks: The Complete Reference

B Second is the I/O-intensive nature of relational processing. I/O content and activity
becomes intensive as the rows of data from tables are loaded into memory to
build set constructs to compare data elements until all relational operations are
complete. With a database of any size, the compute requirements coupled with
the I/O requirements render relational database processing one of the most
resource-intensive activities for commercial data processing.

Consequently, the relationship with storage for databases becomes very special.
Although there are several considerations when maintaining a storage infrastructure
for RDBMS, here are some particularly important points to consider as we move into
the area of storage networking.

Relational databases have a legacy from UNIX and mainframe environments.
This has resulted in a design whereby most relational database systems (RDBMS)
contain their own /O processing and file management functions. This means that
when installed, they bypass the operating systems’ file system and utilize their own.
This is referred to as an RDBMS that uses a raw disk partition. In effect, they are
performing their own /0 and substituting their own file system, essentially mapping
the raw disk to their own to enable low-level access. Historically, they had to do this
to provide acceptable levels of performance and reliability in the days when UNIX
did not have an optimized file system, much less a journaling file system. Given the
resource-intensive nature of these relational operations, early RDBMS vendors developed
their own I/O systems.

Another important factor to keep in mind is the nature of the relational data structure.
It is a table, not a file, a table. The physical data is stored in native block formats for
those RDBMSs that use their own I/O and file system, or for those whose physical
data is masked from the system when using a standard file system. This means that
without special utilities and knowledge of the database, its state, and its metadata,
that the ability to reconstruct the data structure from a disruption is impossible.
Therefore, databases are difficult, at best, to maintain from a data maintenance aspect
(for instance, backup /recovery operations, archival, and volume management).

Databases, especially the relational model, are a challenge to maintain and manage.
They have a close relationship with storage systems given their own processing
characteristics and development legacy in the area of I/0 technologies. Storage
networking adds new dimensions to the existing challenges in data organization
models and methods. We will explore the role of databases in the world of NAS and
SAN in the upcoming sections.

